16 research outputs found

    A new charge-transfer complex in UHV co-deposited tetramethoxypyrene and tetracyanoquinodimethane

    Full text link
    UHV-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP1-TCNQ1) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), X-ray-diffraction (XRD), infrared (IR) spectroscopy and scanning tunnelling spectroscopy (STS). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d1= 0.894 nm, d2= 0.677 nm). A softening of the CN stretching vibration (red-shift by 7 cm-1) of TCNQ is visible in the IR spectra, being indicative of a CT of the order of 0.3e from TMP to TCNQ in the complex. Characteristic shifts of the electronic level positions occur in UPS and STS that are in reasonable agreement with the prediction of from DFT calculations (Gaussian03 with hybrid functional B3LYP). STS reveals a HOMO-LUMO gap of the CT complex of about 1.25 eV being much smaller than the gaps (>3.0 eV) of the pure moieties. The electron-injection and hole-injection barriers are 0.3 eV and 0.5 eV, respectively. Systematic differences in the positions of the HOMOs determined by UPS and STS are discussed in terms of the different information content of the two methods.Comment: 20 pages, 6 figure

    Pyrene based materials for exceptionally deep blue OLEDs

    No full text

    Understanding the Fluorescence of TADF Light-Emitting Dyes

    No full text

    Electron donors and acceptors based on 2,7-functionalized pyrene-4,5,9,10-tetraone

    No full text

    Charge transfer in the novel donor-acceptor complexes tetra- and hexamethoxypyrene with tetracyanoquinodimethane studied by HAXPES

    No full text
    The effect of charge transfer (CT) in complexes of the donors tetra- and hexamethoxyprene (TMP and HMP) with the classical acceptor tetracyanoquinodimethane (TCNQ) was studied using hard X-ray photoemission (HAXPES). Microcrystals of the complex were grown via vapour diffusion from donor-acceptor mixtures. The bulk sensitivity of HAXPES at a photon energy of 6 key completely eliminates the problem of surface contamination for such delicate organic materials grown from solution. The donor molecules were produced using a novel synthesis route functionalizing polycyclic aromatic hydrocarbons at their periphery. For comparison, spectra were also taken from thin-film samples of the same compounds produced via co-deposition in UHV. Upon complex formation, the oxygen 1s core-level spectra (being a fingerprint of the methoxy-group of the donors) change from the single-line spectrum of pure HMP (TMP) to a spectrum with two distinct lines shifted by 1.4 (0.9) eV and 2.6 (2.3) eV with respect to the position of the oxygen 1s line of the pure donors. The nitrogen 1s spectra (being a fingerprint of the cyano-group in the acceptor) show two peaks as well with a corresponding shift of 0.9 eV and 2.0 eV in comparison with the leading line of pure TCNQ in opposite direction to the oxygen is spectra. These values are substantially larger than shifts in near edge X-ray absorption fine structure (NEXAFS) and ultraviolet photoelectron spectroscopy (UPS) spectra of the same complexes. The changes in the spectra are discussed in terms of the CT in the complexes. Residues of pure donor and acceptor materials in the microcrystal fractions of the complexes are evident from the presence of non-shifted lines. Peak-area analysis reveals that charge is transferred to a fraction of 60% of the molecules in the complexes. (C) 2012 Elsevier B.V. All rights reserved
    corecore